
www.manaraa.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGPLAN’05 June 12–15, 2005, Location, State, Country.
Copyright © 2004 ACM 1-59593-XXX-X/0X/000X…$5.00.

Jidoka in Software Development
Emanuele Danovaro
Center for Applied Software

Engineering
Free University of Bolzano/Bozen,

Italy
emanuele.danovaro@unibz.it

Andrea Janes
Center for Applied Software

Engineering
Free University of Bolzano/Bozen,

Italy
andrea.janes@unibz.it

Giancarlo Succi
Center for Applied Software

Engineering
Free University of Bolzano/Bozen,

Italy
giancarlo.succi@unibz.it

Abstract
Lean management is based on two concepts: the elimina-
tion of “Muda”, the waste, from the production process,
and “Jidoka”, the introduction of quality inside the produc-
tion process and product. In software production, the elimi-
nation of Muda received significant attention, while Jidoka
has not yet been fully exploited. In this work we want to
propose a holistic approach to insert Jidoka in software
production. We depict the architecture of a tool to support
Jidoka and describe the components that are part of it.

Categories and Subject Descriptors D.2.8 [Software]:
Engineering – Metrics

General Terms Management, Measurement

Keywords Quality assurance; Jidoka

1. Introduction
Short after WWII Taiichi Ohno and Shigeo Shingeo revolu-
tionized the Toyota Production System with the idea of
lean production (Ohno 1988). Because of their visible and
tangible success, their ideas were successfully exported
from Japan to the Western world.

The Toyota Production System advises to eliminate
from the production process all activities that do not pro-
duce value to the customer (i.e., Muda).

The philosophy to focus on customer satisfaction as a
wayto increase flexibility came back in the ’90 with the
book “Lean Thinking” by Womack and Jones (1996). Lean
Thinking brought the lean idea into new industries such as
the pharmaceutical industry (Petrillo 2007) and software
development (Poppendieck and Poppendieck 2006). Agile

methods are a group software development methodologies
that put the ideas of lean thinking into the practice of soft-
ware development (Beck et al. 2001).

Ohno identifies two references for lean production: Just-
in-time production and Jidoka. The elimination of Muda is
a requisite for Just-in-time production, where the resources
needed to complete a certain step are made available at the
latest possible moment. Jidoka is often translated with “au-
tonomation” or “automation with a human mind” and is
usually illustrated making the example of a machine that
can detect a problem with the produced output and interrupt
production automatically rather than continue to run and
produce bad output (Ohno 1988; Monden 1993). Some
authors translate Jidoka with “quality-at-the-source” (Stan-
dard and Davis 1999) meaning that quality is inherent in
the production system and is not checked after the process.
In essence Jidoka is composed by two parts: a mechanism
to detect problems, i.e., abnormalities or defects, and a me-
chanism to interrupt the production line or machine when a
problem occurs (Monden 1993).

We think that the elimination of Muda has received a
significant attention in software production, for instance in
the analysis of the value stream, the focus on activities that
provide value, the deferral of commitment of irreversible
decisions to just the moment when it is needed (Poppen-
dieck and Poppendieck 2006; Beck 1999). Jidoka has not
received equal attention, in our view. An indicator that the
concept of Muda is much more popular than Jidoka is that
searching in Google for “Muda” results in about
21,000,000 hits, whereas searching for “Jidoka” results in
39,600 hits (on July 1st, 2008).

To our knowledge, all proposals to insert Jidoka in soft-
ware production relate to automated testing and continuous
integration. We agree that automated testing and conti-
nuous integration (and the use of tools supporting it such as

www.manaraa.com

jUnit1 and CruiseControl2 implement the idea of Jidoka and
are extremely important, but this is only one aspect of qual-
ity in software development. Also other quality attributes
about the code produced and the process can and should
make use of Jidoka during software production.

In this article, we present the idea underneath a tool to
promote Jidoka in software production.

The article is organized as follows: section 2 gives an
architectural overview of a tool following Jidoka, section 3
describes our mechanism to identify software production
problems, and section 4 describes our mechanism to inter-
rupt software production. We conclude giving an outlook
on future work.

2. General architecture
We depict a general architecture of a tool to support Jidoka
in software engineering in figure 1. The dashed lines
represent measurements, the solid lines execution flow. As
said before, the idea of Jidoka consists of two mechanisms,
one to detect problems (elements in orange), and one to
interrupt the production when problems occur (elements in
green). Both of these mechanisms need to be tailored spe-
cifically to the software domain.

This schema can be seen as an instance of the well-
known Deming cycle “Plan, Do, Check, Act” (Deming
2000); in our architecture, the steps 1 and 2 correspond to
“Plan” and “Do”, the steps 3 and 4 to “Check” and the
steps 5 and 6 to “Act”. The idea to continuously monitor
software artifacts and to alert the developer of possible mis-
takes or problems is not new. It has been proposed in the
past e.g., within design tools like ArgoUML (Robbins and
Redmiles 2000), in which a critiquing system constantly
monitors the ongoing UML design and generates warnings

1 JUnit, http://junit.sourceforge.net
2 CruiseControl, http://cruisecontrol.sourceforge.net

of possible problems. Tools like Findbugs3 or PMD4 scan
Java source code and looks for potential problems, which
can be defined by rules written in Java or using XPath ex-
pressions. A last example is Holmes (Succi et al. 2001)
which gives feedback on aspects of code quality specific
for the domain of software product line development. The
proposed approach introduces two novelties: first, we
measure not only the produced artifacts but also the used
resources as well as the performed activities to obtain a
complete picture of software production, and second, we
propose to use rules to build quality into the process, i.e., to
enforce these rules without the need of a person to con-
stantly check them.

In our view, the “push” paradigm is currently dominat-
ing the area of tools to ensure software quality: the user has
to regularly run a tool to discover which rules are not ful-
filled and to decide if a corrective action is required, the
burden lies on the user. We want to propose a paradigm
shift towards a “pull” paradigm as suggested by lean think-
ing (Ohno 1988) or proposed in other domains such as
product line development (Succi et al. 2001), in which the
user defines properties of critical situations and the system
performs the regular check for him or her.

The architecture of our system is shown in figure 2. The
Measurement Probes continuously extract data from the
development process about the input (the used resources),
the produced output, and the activities carried out without
the need of manual intervention by developers. Such data
are stored in the Data Storage. The Rules Engine contains a
set of rules, retrieves the data from the data storage, analys-
es them, and generates warnings if a rule is violated. The
Notifier contains the actions to perform if a rule is violated.

In the following we will discuss the components “Mea-
surement Probes” (section 3), “Rule Engine” and “Notifier”
(both in section 4). The data storage component, responsi-
ble of storing all data collected by the tool is omitted due to
lack of space.

3 FindBugs, http://findbugs.sourceforge.net
4 PMD, http://pmd.sourceforge.net

Rules Engine Notifier
Warnings

Data
Storage

Measure-
Measurement

Probes

Rule execu-
tion

Figure 2. Architecture of the Jidoka tool.

1. Set rules

2. Software
development

process

3. Collect data
about software
production

 4. Rules
fulfilled?

5. Notify
stakeholders

N

Yes

6. Fix problem

 Output
 Input
 (Resour‐

ces)

Measurements
Jidoka

Figure 1. Data flows within a tool to support Jidoka in
software production

www.manaraa.com

3. Identifying problems in software
production

Jidoka means not allowing defective parts to go ahead in
the development process. Therefore, we need a clear crite-
ria, or rule, to decide whether a software artifact is ready to
proceed to the next production step. To evaluate these crite-
ria, suitable data have to be collected.

In principle, only necessary data are collected to avoid
wasting resources. Our architecture allows such an ap-
proach; measurement probes tailored to a specific case can
be developed and connected to the data storage. However,
taking such rigid approach requires to develop new, or to
adapt existing measurement probes every time the rules are
changed. To increase the flexibility of the approach, we
have developed three generic probes that collect detailed
data about (a) consumed resources (output), (b) ongoing
activities (process) and (c) produced artifacts (input). With
such approach if later an additional piece of information is
needed, it can be obtained just by elaborating the available
data.

The following subsections describe the measurement
probes. The architecture of all probes is similar, as shown
in figure 3: the collected data is stored in a local cache and
submitted as soon as a network connection is available (see
figure 2).

3.1 Collecting data about resource consumption

The main cost driver in software development projects is
typically the effort (Jorgensen and Shepperd 2007). To col-
lect data about resource consumption we focused on collec-
tion of time spent creating and modifying artifacts like code
and documentation.

We developed a set of probes that have to be installed on
the machine of every developer. We have two types of
probes: probes to track the time spent editing documents

with applications like Microsoft Office5 and OpenOffice6,
and probes to track the time spent editing source code with-
in IDEs like Eclipse7, Microsoft Visual Studio8, Sun Net-
Beans9, and JetBrains IntelliJIdea10. For each entity (i.e. an
OpenOffice document, a Java method) we collect the time
spent creating and editing it, and the user who did the mod-
ification.

Not all effort is spent in front of the computer. Effort
spent off-line has to be entered manually, for this purpose
we provide a measurement probe that allows the user to
enter activities manually, defining the time spent and effort
category.

3.2 Collecting data about process output

The output of the software development process are arti-
facts like source code and documentation. Each artifact is
characterized by properties which help to decide whether it
fulfills the requirements or not. We can distinguish two
ways to test the output of a software development process:
statically and dynamically (Fenton and Pfleeger 1998). The
dynamic testing, i.e., through the execution of the source
code is performed by tools like CruiseControl or TeamCi-
ty11. This is a Jidoka approach: on a regular basis they
download source code and run all unit tests (this is “the
mechanism to detect problems”) and notify errors to the
developers (this is “the mechanism to stop the production
line”).

Our measurement component for the inspection of the
output focuses on the second aspect - the static analysis.
Our component regularly checks out the source code and
calculates the Chidamber and Kemerer (Chidamber and
Kemerer 1994) object oriented software metrics. The ob-
tained measurements are transmitted to the Data storage
component.

3.3 Identifying activities

According to our experience, the identification of activi-
ties is not a straightforward process. Depending on the con-
text, the term “activity” refers to a different set of actions
carried out during software production. In one case editing
a specific artifact leads to the identification of an activity,
e.g., the time spent editing a class that begins with the let-

5 Microsoft Office, http://www.microsoft.com/office
6 OpenOffice.org, http://www.openoffice.org
7 Eclipse.org, http://www.eclipse.org
8 Microsoft Visual Studio, http://msdn2.microsoft.com/vs2008/products
9 Sun NetBeans, http://www.netbeans.org
10 JetBrains IntelliJIDEA, http://www.jetbrains.com/idea
11 TeamCity, http://www.jetbrains.com/teamcity

Measurement probe

Measure-

Local cache

Data Collec‐
tion (Eclipse)

Data Collec‐
tion (Visual
Studio)

Report

Report

Data Transmis‐
sion

Data
access

Figure 3. Architecture of measurement probes

www.manaraa.com

ters “test” could be attributed to the “testing” activity. In
another case, observing a sequence of steps is needed to
identify an activity, e.g., “test first”. To allow a contextua-
lized definition of “activity”, we implemented the compo-
nent responsible to identify activities with a rule based
approach. Rules defined using a Prolog syntax are regularly
run in order to identify the occurrence of an activity within
a specific time span. This approach allows also the modifi-
cation of rules “a posteriori”, i.e., rules can be changed ac-
cording to the needs and rerun on the past data to have a
coherent view of the entire data.

The output of this component is the sequence of identi-
fied activities within a specific time span, together with the
respective timestamps and users.

4. Interrupting the software
production line

Interrupting production is done to prevent further dama-
geand waste of resources. Within software production an
example hereof is the use of “check-in policies” in source
control systems, which define conditions that a developer
has to meet to check in modified code.

In our system, the criteria (i.e. the knowledge) to decide
whether to stop software production or not are specified as
a set of rules. The Rule engine fetches data from the Data
Storage and checks the collected measurements against
userspecified rules. The Notification component is trig-
gered, if a rule is violated.

The quality of the rules has a high impact on the utility
of the here proposed system. We suggest to align the rules
put into this system with the business goals to create rules
that are perceived by all stakeholders as purposeful. The
rules defined in this tool have to lead to a decision whether
to interrupt the production line (in our case the software
production) or not. It’s alignment to the business goals al-
lows the user to understand the considerations that led to
the conclusion that something is wrong. Furthermore, such
an alignment involving all stakeholders in setting the goals
before actual implementation has been found to improve
organizational performance (Gopal et al. 2002).

A systematic way to do this alignment is given by the
GQM method, which “is based upon the assumption that
for an organization to measure in a purposeful way it must
first specify the goals for itself and its projects, then it must
trace those goals to the data that are intended to define
those goals operationally, and finally provide a framework
for interpreting the data with respect to the stated goals”
(Basili and Rombach 1987).

We envision two mechanisms to “stop the production
line”: (a) an “alert lamp” as implemented in the Eclipse
IDE, and for users of other development environments (b)
an application that is shown in the tray area visualizing
alerts. The first mechanism, within Eclipse, shows an alert

lamp together with the description of the violated rule, next
to the “incriminated” code element. This creates visibility
since every developer working on that project sees that
there is a problem. The second mechanism is an application
shown in the tray area, which visualises the rules that have
been violated.

5. Conclusion and future work
In this work, we present a novel scenario in software de-

velopment. We demonstrate, how quality assurance can be
“built into the process”, as proposed by lean thinking. We
give an example of how to integrate the continuous moni-
toring of produced artifacts, ongoing development activi-
ties, and consumed resources with the production process
together with the knowledge about unacceptable values of
the monitored data.

Further research is needed to establish (a) which other
types of knowledge can be integrated in this way – some
examples are: the adherence to a defined workflow, advice
about testability, warnings about the violation of user inter-
face guidelines, and (b) which ways to interrupt software
production lead to an easy adoption and maximize the out-
come of this approach. The requirements of all stakehold-
ers, management, developers, customers have to be
considered.

We aim to inspire others to follow our line of research in
trying to “build quality into” the software development
process and in this way pay attention to the quality of arti-
facts, even at early stage of the development.

References
V. R. Basili and H. D. Rombach. Tailoring the software process to

project goals and environments. In ICSE ’87: Proceedings of
the 9th international conference on Software Engineering,
pages 345–357, Los Alamitos, CA, USA, 1987. IEEE Com-
puter Society Press.

K. Beck. Extreme Programming Explained: Embrace Change.
Addison Wesley Professional, 1999.

K. Beck, M. Beedle, van A. Bennekum, A. Cockburn,W. Cun-
ningham, M. Fowler, J. Gren-ning, J. Highsmith, A. Hunt, R.
Jeffries, J. Kern, B. Marick, R. C. Martin, S. Mellor, K.
Schwaber, J. Sutherland, and D. Thomas. Manifesto for agile
software development, 2001. http://www.agilemanifesto.org.

S. R. Chidamber and C. F. Kemerer. A metrics suite for object
oriented design. IEEE Trans. Softw. Eng., 20(6):476–493,
1994.

W. E. Deming. Out of the Crisis. The MIT Press, August 2000.

N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous
and Practical Approach, Revised. Course Technology, 1998.

A. Gopal, M.S. Krishnan, T. Mukhopadhyay, and D. R. Golden-
son. Measurement programs in software development: De-

www.manaraa.com

terminants of success. IEEE Trans. Softw. Eng., 28(9):863–
875, 2002.

M. Jorgensen and M. Shepperd. A systematic review of software
development cost estimation studies. IEEE Trans. Softw.
Eng., 33(1):33–53, 2007.

Y. Monden. Toyota Production System. Industrial Engineering
Press, Norcross, GA, 2nd ed. edition, 1993.

T. Ohno. Toyota Production System: Beyond Large-Scale Produc-
tion. Productivity Press, Cambridge, MA, USA, 1988.

E. W. Petrillo. Lean thinking for drug discovery - better produc-
tivity for pharma. DDW Drug Discovery World, 8(2):pp. 9–
16, 2007.

M. Poppendieck and T. Poppendieck. Implementing Lean Soft-
ware Development: From Concept to Cash. Addison-Wesley
Professional, 2006.

J. E. Robbins and D. F. Redmiles. Cognitive support, uml adhe-
rence, and xmi interchange in argo/uml. Journal of Informa-
tion and Software Technology, 42(2):79–89, 2000.

C. Standard and D. Davis. Running today’s factory: a proven
strategy for lean manufacturing. Hanser Gardner Publica-
tions, Cincinnati, 1999.

G. Succi, J. Yip, and W. Pedrycz. Holmes: an intelligent system to
support software product line development. In ICSE ’01:
Proceedings of the 23rd International Conference on Soft-
ware Engineering, pages 829–830, Washington, DC, USA,
2001. IEEE Computer Society.

J. P. Womack and D. T. Jones. Lean thinking: Banish waste and
create wealth in your corporation. Simon & Schuster, New
York, NY, USA, 1996.

t

